Вы всë ещë считаете корпуса? Тогда мы идëм к вам! :)
Последние сообщения
Всем привет. Хочу добавить из собственного опыта работы с мощными Радио и ТВ передающими станциями.
В критически важных высоковольтных мощных ВЧ узлах используются дегидраторы т.к. простой вентилятор не годится.
Поток осушенного воздуха направляется на такие потенциально опасные для пробоя узлы как КПЕ и т.п.
Особо это критично при повышенной влажности в летний период.
Пылинки прилипают к металлу между ВВ ВЧ элементами уменьшая воздушный зазор и вызывают пробой и дугу.
Все видели как красив вентилятор компютерного блока питания после определённого срока работы.
Тут получается похожая картинка плюс очень красивая дуга и необратимые вредные последствия.

День Радио – 7 мая – праздник радиолюбителей и профессионалов, имеющих отношение к радиосвязи, радиотехнике, радиоэлектронике и другим областям в большом мире Радио.
Здоровья, долгих лет жизни, благополучия. Развития в радио и счастливой жизни. С Праздником.
Система уравнивания потенциалов
Так как ЗУ имеет сопротивление, и в случае протекания через него тока оказывается под напряжением, его одного недостаточно для защиты людей от поражения током.
Правильная защита создается путём организации системы уравнивания потенциалов (СУП), то есть электрического соединения PE проводки и всех доступных для прикосновения металлических частей здания (в первую очередь водопроводы и отопительные трубопроводы).
В этом случае, даже если ЗУ окажется под напряжением, под ним же оказывается всё металлическое и доступное для прикосновения, что снижает риск поражения током.
В кирпичных домах советского периода, как правило, СУП не организовывалась, в панельных же (1970-е и позже) — организовывалась путём соединения в подвале дома рамы электрощитков (PEN) и водопроводов.
В местностях с высоким удельным электрическим сопротивлением грунта (пустыни, зоны многолетней мерзлоты) уравнивание потенциалов приходится выполнять не только внутри здания, но и между зданиями. Например, в Норильске здания объединены общим контуром заземления, вокруг каждого здания в грунте находятся штыри выравнивания потенциалов. При этом общий контур заземления зданий соединен с контуром заземления ТЭЦ-1, образуя по факту «искусственную землю». Однако главные заземлители все таки погружены в не промерзающие водоемы (озеро Долгое и другие), что обеспечивает электрическую связь с «естественной землёй». Похожая система существует и ряде городов Средней Азии. Но, например, в Аркалыке, где водоёмов нет, «искусственная земля» получается изолированной.
Защитное действие заземления основано на двух принципах:
- Уменьшение до безопасного значения разности потенциалов между заземляемым проводящим предметом и другими проводящими предметами, имеющими естественное заземление.
- Отвод тока утечки при контакте заземляемого проводящего предмета с фазным проводом. В правильно спроектированной системе появление тока утечки приводит к немедленному срабатыванию защитных устройств (устройств защитного отключения — УЗО).
- В системах с глухозаземлённой нейтралью — инициирование срабатывания предохранителя при попадании фазного потенциала на заземлённую поверхность.
Заземление наиболее эффективно только в комплексе с использованием устройств защитного отключения. В этом случае при большинстве нарушений изоляции потенциал на заземлённых предметах не превысит безопасных величин. Более того, неисправный участок сети будет отключён в течение очень короткого времени (десятые…сотые доли секунды — время срабатывания УЗО).
Работа заземления при неисправностях электрооборудования:
Типичный случай неисправности электрооборудования — попадание фазного напряжения на металлический корпус прибора вследствие нарушения изоляции. Современные электроприборы, имеющие импульсный источник вторичного электропитания, и снабжённые трёхполюсной вилкой, — такие как системный блок ПЭВМ, — при отсутствии заземления имеют опасный потенциал на корпусе, даже когда они полностью исправны.) В зависимости от того, какие защитные мероприятия реализованы, возможны следующие варианты:
Корпус не заземлён, УЗО отсутствует (наиболее опасный вариант).
- Корпус прибора будет находиться под фазным потенциалом и это никак не будет обнаружено. Прикосновение к такому неисправному прибору может быть смертельно опасным.
Корпус заземлён, УЗО отсутствует.
- Если ток утечки по цепи фаза-корпус-заземлитель достаточно велик (превышает порог срабатывания предохранителя, защищающего эту цепь), то предохранитель сработает и отключит цепь. Наибольшее действующее напряжение (относительно земли) на заземлённом корпусе составитUmax=RG·IF, гдеRG− сопротивление заземлителя,IF− ток, при котором срабатывает предохранитель, защищающий эту цепь. Данный вариант недостаточно безопасен, так как при высоком сопротивлении заземлителя и больших номиналах предохранителей потенциал на заземлённом проводнике может достигать довольно значительных величин. Например, при сопротивлении заземлителя 4 Ом и предохранителе номиналом 25 А потенциал может достигать 100 вольт.
Корпус не заземлён, УЗО установлено.
- Корпус прибора будет находиться под фазным потенциалом и это не будет обнаружено до тех пор, пока не возникнет путь для прохождения тока утечки. В худшем случае утечка произойдёт через тело человека, коснувшегося одновременно неисправного прибора и предмета, имеющего естественное заземление. УЗО отключает участок сети с неисправностью, как только возникла утечка. Человек получит лишь кратковременный удар током (0,01…0,3 с — время срабатывания УЗО), как правило, не причиняющий вреда здоровью.
Корпус заземлён, УЗО установлено.
- Это наиболее безопасный вариант, поскольку два защитных мероприятия взаимно дополняют друг друга. При попадании фазного напряжения на заземлённый проводник ток течёт с фазного проводника через нарушение изоляции в заземляющий проводник и далее в землю. УЗО немедленно обнаруживает эту утечку, даже если та весьма незначительна (обычно порог чувствительности УЗО составляет 10 мА или 30 мА), и быстро (0,01…0,3 с) отключает участок сети с неисправностью. Помимо этого, если ток утечки достаточно велик (превышает порог срабатывания предохранителя, защищающего эту цепь), то может также сработать и предохранитель. Какое именно защитное устройство (УЗО или предохранитель) отключит цепь — зависит от их быстродействия и тока утечки. Возможно также срабатывание обоих устройств. Важно также, что только в этом случае, отказ какого-либо одного из двух защитных устройств не приведёт к полной неработоспособности системы защиты.

Ошибки в проектировании устройств заземления.
Неправильные PE-проводники
Иногда в качестве заземлителя используют водопроводные трубы или трубы отопления, однако их нельзя использовать в качестве заземляющего проводника[15]. В водопроводе могут быть непроводящие вставки (например, пластиковые трубы), электрический контакт между трубами может быть нарушен из-за коррозии, и, наконец, часть трубопровода может быть разобрана для ремонта. Также существует опасность поражения электрическим током при соприкосновении с токопроводящими частями сантехники.
«Чистая земля»
Популярным является поверье о том, что компьютерные и телефонные установки требуют заземления, отдельного от общего заземления всего здания.
Такое мнение справедливо лишь в случае требования и/или организации функционального заземления, необходимого для правильной работы оборудования.
При организации защитного заземления, такое поверье будет совершенно неверно, ибо ЗУ имеет ненулевое сопротивление, и, в случае КЗ (и даже небольшой, не обнаруживаемой автоматикой утечки) фаза — PE на одном из устройств, по ЗУ начинает течь ток и его потенциал растёт из-за сопротивления ЗУ. В случае наличия 2 и более независимых ЗУ это приведёт к появлению разности потенциалов между PE различных электроустановок, что может создать риск поражения людей током, а также заблокировать (или даже разрушить) интерфейсные устройства без гальванической развязки, которые соединяют 2 части системы, заземлённые от независимых ЗУ.
Правильным решением является организация системы уравнивания потенциалов.
Вышеперечисленное относится также и к «кустарным» реализациям, к примеру иногда применяемому в сельской местности методу заземления одного прибора путём соединения его с закопанным металлическим контактом (например, ведром).
Объединение рабочего нуля и PE-проводника
Другим часто встречающимся нарушением является объединение рабочего нуля и PE-проводника за точкой их разделения (если она есть) по ходу распределения энергии.[16] Такое нарушение может привести к появлению довольно значительных токов по PE-проводнику (который не должен быть токонесущим в нормальном состоянии), а также к ложным срабатываниям устройства защитного отключения (если оно установлено).
Неправильное разделение PEN-проводника
Крайне опасным является следующий способ «создания» PE-проводника: прямо в розетке определяется рабочий нулевой проводник и ставится перемычка между ним и PE-контактом розетки. Таким образом, PE-проводник нагрузки, подключённой к этой розетке, оказывается соединённым с рабочим нулём.
Опасность данной схемы в том, что на заземляющем контакте розетки, а следовательно, и на корпусе подключённого прибора появится фазный потенциал, при выполнении любого из следующих условий:
Разрыв (рассоединение, перегорание и т. д.) нулевого проводника на участке между розеткой и щитом (а также далее, вплоть до точки заземления PEN-проводника);
Перестановка местами фазного и нулевого (фазный вместо нулевого и наоборот) проводников, идущих к этой розетке.
Принятые обозначения для электроустановок напряжением до 1 кВ:
система TN — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземлённой нейтрали источника посредством нулевых защитных проводников;
система TN-С — система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всём её протяжении;
система TN-S — система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всём её протяжении;
система TN-C-S — система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то её части, начиная от источника питания;
система IT — система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части электроустановки заземлены;
система ТТ — система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземлённой нейтрали источника.
Первая буква — состояние нейтрали источника питания относительно земли
Т — заземлённая нейтраль (лат. terra);
I — изолированная нейтраль (англ. isolation).
Вторая буква — состояние открытых проводящих частей относительно земли
Т — открытые проводящие части заземлены, независимо от отношения к земле нейтрали источника питания или какой-либо точки питающей сети;
N — открытые проводящие части присоединены к глухозаземлённой нейтрали источника питания.
Последующие (после N) буквы — совмещение в одном проводнике или разделение функций нулевого рабочего и нулевого защитного проводников
S — нулевой рабочий (N) и нулевой защитный (PE) проводники разделены (англ. separated);
С — функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике (PEN-проводник) (англ. combined);
N — нулевой рабочий (нейтральный) проводник; (англ. neutral)
PE — защитный проводник (заземляющий проводник, нулевой защитный проводник, защитный проводник системы уравнивания потенциалов)(англ. Protective Earth)
PEN — совмещённый нулевой защитный и нулевой рабочий проводники (англ. Protective Earth and Neutral).
Худшими вариантами для установки устройства заземления являются каменистые и скальные грунты
Лучшими грунтами для заземления считаются торфяные, суглинистые и глинистые с влажностью 20–40%
При проектировании заземляющего устройства необходимо иметь достоверные данные об удельном сопротивлении грунта на месте строительства. Точную информацию можно получить только с помощью изысканий и измерений на местности
Некоторые типы грунтов и их примерное удельное сопротивление:
- ПГС, влажный песок — 300–500 Ом·м;
- смесь глины и песка — 100–150 Ом·м;
- чернозём — 50–60 Ом·м;
- глина — 50–60 Ом·м;
- садовая земля — 30–40 Ом·м;
- суглинок с золой и пеплом — 30–40 Ом·м;
- торф — 20–30 Ом·м.
Для получения наилучших характеристик заземляющего устройства необходимо проводить расчёты.
Улучшить свойства проводимости почвы:
Соль, древесный уголь и древесная труха используются в заземлении для улучшения проводимости почвы, повышая эффективность системы заземления. Соль способствует удержанию влаги, древесный уголь является хорошим проводником, помогая поддерживать стабильную и проводящую среду вокруг заземляющего электрода. Соль: Соль, особенно хлорид натрия, растворяется в воде, образуя раствор электролита, что значительно повышает способность почвы проводить электричество.
Древесный уголь: Древесный уголь служит отличным проводником и помогает впитывать влагу, предотвращая чрезмерное увлажнение почвы, что создает более стабильную и проводящую среду.
Древесная труха: Добавление древесной трухи, мелко нарубленной древесины, улучшает проводимость и удержание влаги. Она также препятствует уплотнению почвы, повышая её проводящие способности.
Как это работает: Сочетание этих материалов в системе заземления делает почву вокруг электрода более проводящей, за счёт снижения удельного сопротивления.
Творческого вдохновения, успехов в конструировании, дальних связей, долгих лет красочной жизни!

Химию ещё помнишь...